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Abstract. It is well known from the work of Noether that every variational

symmetry of an integral functional gives rise to a corresponding conservation
law. In this paper we prove that each such conservation law arises directly as

the Euler-Lagrange equation for the functional on taking suitable variations

around a minimiser.

1. Introduction

Classically, since the pioneering work of E. Noether [9], conservation laws
associated to stationary points of an integral functional are obtained upon writ-
ing the invariance of that functional under a suitable one-parameter group of of
transformations and combining the result with the Euler-Lagrange equations that
express stationarity (see e.g. [10]). Such an approach implicitly assumes that the
stationary points of the functional are smooth enough for all chain rules to be licit;
it also presupposes that the Euler-Lagrange equations are indeed satisfied.

More recently, C.B. Morrey (see e.g. [8]) introduced the notion of qua-
siconvexity which was later developed by J.M. Ball [2] to obtain a variational
approach to static hyperelasticity. A difficulty in that variational approach is the
current inability to prove that minimizers of the potential energy satisfy the asso-
ciated Euler-Lagrange equations 1. A major difficulty is that the usually adopted
restriction that kinematically admissible displacement fields u should satisfy

det ∇u > 0 a.e.

prohibits the usual smooth variations u0+tφ, t ∈ IR, φ ∈ C1
0 (Ω), around a minimizer

u0 ∈ W 1,1(Ω).

In spite of that obstacle, J.M. Ball showed in [1] that conservation of the
energy-momentum tensor - a seminal conservation law associated to the homoge-
neous character of the energy density - could be obtained for minimizers of the
potential energy, even though the Euler-Lagrange equations might not be satisfied.

1Partial regularity results for quasiconvex integrands have been obtained by Evans [7], but
under hypotheses which are incompatible with the usual growth requirement (4.3) in nonlinear

elasticity.
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Ball obtained this result by using “inner” variations around u0, that is variations
of the form u0(x + tφ(x)), t ∈ IR, φ ∈ C1

0 (Ω).

In this short paper, we propose to generalize the above quoted result and to
show that a suitable choice of more general one-parameter groups of transformations
will directly generate a host of conservation laws (in weak form) for minimizers of
the energy, the Euler-Lagrange equations not withstanding.

In section 2, we recall the classical Noetherian approach to conservation laws.
In Section 3, we demonstrate how more general one-parameter groups of transfor-
mations permit us to circumvent the Euler-Lagrange equations and directly derive
conservation laws for energy minimizers. In Section 4, we apply this approach to
the specific setting of hyperelasticity and recover in particular J.M. Ball’s results.
The final section is very short and points to a few possible extensions of our method.

Finally, we should stress a strong bias in favor of conciseness. We thus chose
not to spell out all smoothness and/or growth assumptions on the energy densities,
since these may vary with the specific kind of transformations under consideration.
The reader is invited to consult the relevant references for a description of the
precise assumptions on those densities, given a particular invariance.

For further background and references on conservation laws and applications,
we refer to the comprehensive text of Olver [10]. In this paper we adopt the notation
used in [10] and will also refer to key calculations contained therein.

2. Variational symmetries

Let Ω ⊂ IRm be a domain and consider the integral functional

(2.1) E(u; Ω′) =
∫

Ω′
L(x,u(x),∇u(x)) dx

where L : Ω × IRn × IRn×m → IR is a given Caratheodory integrand, Ω′ is an
arbitrary open subdomain of Ω, and E is defined on maps u : Ω′ → IRn which are
(at least) in W 1,1(Ω′; IRn).

Consider a smooth one-parameter group of transformations of independent and
dependent variables given by

(2.2) (x,u) → (x̃, ũ) = (Ξt(x,u),Φt(x,u))

where t ∈ IR is the group parameter and t = 0 corresponds to the identity trans-
formation (so that Ξ0(x,u) ≡ x and Φ0(x,u) ≡ u.) We will sometimes write
(Ξt(x,u),Φt(x,u)) = (Ξ(x,u, t),Φ(x,u, t)) to emphasize the role of the parameter
t, in which case it will be assumed that Ξ,Φ are smooth with respect to all their
arguments.

An important concept when working with such groups of transformations is the
notion of the infinitesimal generator of the group which is the differential operator
defined by 2

(2.3) v = ξα(x,u)
∂

∂xα
+ φi(x,u)

∂

∂ui
,

2Here and in the rest of this paper we use the convention of summing over repeated indices.
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where ξ(x,u) := d
dtΞ(x,u, t)

∣∣
t=0

and φ(x,u) := d
dtΦ((x,u, t)

∣∣
t=0

(see [10] for fur-
ther details).

Remark 2.1. Hence, in particular, given a real valued function F(x,u) we obtain

d

dt
F(Ξt(x,u),Φt(x,u))

∣∣∣∣
t=0

= v(F(F(x,u)) .

Given any particular subdomain Ω′ ⊂ Ω, and any map u : Ω′ → IRn, the
change of variables given by (2.2) induces a new transformed function ũ(x̃), ũ :
Ω̃′ → IRn where Ω̃′ = (Ξt ◦ (id× u)) (Ω), which is obtained as follows: first note
that x̃ = Ξt(x,u(x)) = (Ξt ◦ (id× u)) (x). By our assumptions on the group of
transformations it follows, upon application of the Implicit Function Theorem, that
this relation can be inverted for small t to yield x = (Ξt ◦ (id× u))−1 (x̃). The new
transformed function ũ(x̃) depends on t and is given by

(2.4) ũ(x̃) = [Φt ◦ (id× u)] ◦ [Ξt ◦ (id× u)]−1 (x̃) .

Through the above construction, the group of transformations (2.2) naturally ex-
tends to a corresponding action on the first derivatives ∇xu (which are mapped to
∇x̃ũ). It can be shown that this extended action

(x,u,∇xu) → (x̃, ũ,∇x̃ũ)

has infinitesimal generator v(1) (known as the first prolongation of v ) given by

(2.5) v(1) = ξα(x,u)
∂

∂xα
+ φi(x,u)

∂

∂ui
+ πi

α(x,u,∇u)
∂

∂F i
α

where

(2.6) πi
α(x,u,∇u) =

d

dt

∂ũi(x̃)
∂x̃α

∣∣∣∣
t=0

=
∂

∂xα
[φi(x,u(x))]− ∂ui

∂xβ

∂

∂xα
[ξβ(x,u(x))]

(see [10] page 114).

Following standard terminology (see e.g. Definition 4.10 in [10]) we say that
(2.2) is a variational symmetry of (2.1) if for any subdomain Ω′ ⊂ Ω and any map
u : Ω′ → IRn we have∫

Ω′
L(x,u(x),∇u(x)) dx =

∫
Ω̃′

L(x̃, ũ(x̃),∇ũ(x̃)) dx̃ .

It then follows that (2.2) is a variational symmetry if and only if

(2.7)
d

dt

∫
Ω̃′

L(x̃, ũ,∇x̃ũ(x̃))
∣∣∣∣
t=0

= 0

for any map u : Ω′ → IRn. It follows from theorem 4.12 in [10] that

d

dt

∫
Ω̃′

L(x̃, ũ,∇x̃ũ(x̃))
∣∣∣∣
t=0

=∫
Ω′

v(1)L(x,u,∇xu(x)) + L(x,u,∇xu(x))Div ξ(x,u(x)) dx ,(2.8)

where Div ξ(x,u(x)) = ∂
∂xβ

(
ξβ(x,u(x))

)
. From (2.7) and the arbitrariness of Ω′,

it now follows that the integrand on the right hand side must vanish identically and
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hence by (2.5) that

0 =
[
ξα(x,u)

∂

∂xα
+ φi(x,u)

∂

∂ui
+ πi

α(x,u,∇u)
∂

∂F i
α

]
L(x,u,∇u)

+
[

∂

∂xα
ξα(x,u(x))

]
L(x,u,∇u) .(2.9)

Using (2.6), we then obtain that

φi(x,u(x))
∂L

∂ui
+

∂

∂xα

(
φi(x,u(x))

) ∂L

∂F i
α

+ ξα ∂L

∂xα
+(2.10) (

∂

∂xα
ξβ(x,u(x))

)
Mβ

α = 0 ,

for any map u : Ω → IRn, where

Mβ
α (x,u,∇u) =

[
L(x,u,∇u)δβ

α −
∂uk

∂xβ

∂L

∂F k
α

(x,u,∇u)
]

are the components of the m×m tensor

M(x,u,∇u) =
[
L(x,u,∇,u)I− (∇u)T ∂L

∂F
(x,u,∇u)

]
which is known as the energy-momentum tensor.

Remark 2.2. Note that the condition that (2.2) be a variational symmetry is ex-
pressible as a pointwise condition in the following way. Since (2.9) holds for all
maps u : Ω → IRn, given any triple (x,u,F) ∈ Ω× IRn× IRn×m, we can find a map
u0(·) such that (x,u0(x),∇u0(x)) = (x,u,F). It then follows that[

ξα(x,u)
∂

∂xα
+ φi(x,u)

∂

∂ui
+ πi

α(x,u,F)
∂

∂F i
α

]
L(x,u,F)

+
[

∂

∂xα
ξα(x,u) +

∂

∂ui
ξα(x,u)F i

α

]
L(x,u,F) = 0

pointwise for any choice of (x,u,F) ∈ Ω× IRn × IRn×m.

Remark 2.3. Assume that u : Ω → IRn satisfies the Euler-Lagrange equations for
(2.1), that is

(2.11)
∂

∂xα

(
∂L

∂F i
α

(x,u(x),∇u(x))
)

=
∂L

∂ui
(x,u(x),∇u(x))

for i = 1, 2, .., n. Further assume that L and u are smooth enough, then an appli-
cation of the chain rule yields

(2.12)
∂

∂xα

(
Mβ

α (x,u(x),∇u(x))
)

=
∂L

∂xβ
(x,u(x),∇u(x)),

for β = 1, 2, ...,m.

It now follows from (2.11), (2.12) and (2.10) that if (2.2) is a variational
symmetry of (2.1) then u satisfies the conservation law

(2.13)
∂

∂xα

[
φi(x,u)

∂L

∂F i
α

(x,u,∇u) + ξβ(x,u)Mβ
α (x,u,∇u)

]
= 0 ,
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for i = 1, 2, .., n. For later use we note that the weak form of the above conservation
law is

(2.14)
∫

Ω

∂θ

∂xα
(x)

[
φi(x,u)

∂L

∂F i
α

+ ξβ(x,u)Mβ
α (x,u,∇u)

]
dx = 0 ,

for any θ ∈ C1
0 (Ω).

Elaborating on the last remark, our goal in the next section is to show that, if
(2.2) is a variational symmetry of E given by (2.1), and if further u0 is a minimizer
for E(.; Ω) - for any kind of appropriate boundary conditions and under any kind
of constraint, provided these are preserved under composition of u0 by a small and
smooth perturbation of the identity - then the conservation law (2.14) still holds
true.

3. Variational symmetry and minimizers

Suppose that u0 is a minimiser of the functional E(.; Ω) and let θ ∈ C1
0 (Ω).

Let (2.2) be a variational symmetry of E and define the one-parameter family of
variations by replacing the parameter t in the definition of the group by the function
tθ(x). Thus we set

(x̃, ũ) = (Ξ̃t(x,u), Φ̃t(x,u)) = (Ξ(x,u, tθ(x)),Φ(x,u, tθ(x))) .

Note that by (2.3), the infinitesimal generator corresponding to the above group of
transformations is given by

ṽ = ξ̃α(x,u)
∂

∂xα
+ φ̃i(x,u)

∂

∂ui

where

(3.1) ξ̃(x,u) = θ(x)ξ(x,u), φ̃(x,u) = θ(x)φ(x,u)

and (by (2.5) and (2.6)) its first prolongation is given by

(3.2) ṽ(1) = ξ̃α(x,u)
∂

∂xα
+ φ̃i(x,u)

∂

∂ui
+ π̃i

α(x,u,∇u)
∂

∂F i
α

,

where

π̃i
α(x,u,∇u) = d

dt
∂ũi(x̃)

∂x̃α

∣∣∣
t=0

= ∂
∂xα [θ(x)φi(x,u(x))]− ∂ui

∂xβ

∂

∂xα
[θ(x)ξβ(x,u(x))].(3.3)

In analogy with (2.4) we define the corresponding family of variations around
u0 by

ũt(x̃) = [Φ ◦ (id× u0 × tθ)] ◦ [Ξ ◦ (id× u0 × tθ)]−1(x̃) .

Note that, since θ ∈ C1
0 (Ω), x̃ = x if x ∈ ∂Ω and thus Ω̃ = Ω for |t| small. Further,

ũ(x̃) = u(x), x ∈ ∂Ω, so that ũ(x̃) is an admissible test function for E(.; Ω). In
other words, since u0 is a minimizer for E(.; Ω), E(ũ0; Ω) ≥ E(u0; Ω) from which
it easily follows that (2.7) holds for Ω̃ = Ω and then, using (2.8), that

0 = d
dt

∫
Ω̃

L(x̃0, ũ0,∇x̃ũ0(x̃))
∣∣
t=0

(3.4)

=
∫
Ω

ṽ(1)L(x,u0,∇xu0(x)) + L(x,u0,∇xu0(x)Div ξ̃(x,u0(x)) dx .
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Next, using (2.10), (3.2), (3.1), (3.3) it follows that (3.4) is equal to∫
Ω

[
ξ̃α(x,u0)

∂

∂xα
+ φ̃i(x,u0)

∂

∂ui
+ π̃i

α(x,u0,∇u0)
∂

∂F i
α

]
L

+L(x,u0,∇xu0(x))Div ξ̃(x,u0(x)) dx

=
∫

Ω

[
θξα ∂

∂xα
+ θφi ∂

∂ui

]
L +

[
∂

∂xα

(
φi(x,u0(x))θ(x)

)
− ∂ui

0

∂xβ

∂

∂xα

(
ξβ(x,u0(x))θ(x)

)] ∂

∂F i
α

L

+LDiv [θξ]

=
∫

Ω

[
v(1)L(x,u0,∇u0(x)) + L(x,u0,∇u0(x))Div ξ(x,u0(x))

]
θ(x) +

[
φi(x,u0)

∂L

∂F i
α

(x,u0,∇u0) + ξβ(x,u0)Mβ
α (x,u0,∇u0)

]
∂θ

∂xα
(x) dx = 0 .

Using (2.9), it now follows that the first term in square brackets vanishes identically
(since (2.2) is a variational symmetry) and hence u0 satisfies (2.14) which is the
weak form of the conservation law (2.13).

We have thus recovered (2.14) for any variational symmetry, provided that u0

is a minimizer for E(.; Ω). In the next section, we apply this to the specific setting
of hyperelasticity and recover known results in a rather straightforward manner.

4. Hyperelasticity and conservation laws

In nonlinear elasticity m = n = 2 or 3 and the integral functional

(4.1) E(u) =
∫

Ω

L(x,∇u(x))dx

is the energy stored by a deformation u : Ω → IRn of an elastic body occupying
the region Ω in its reference configuration. The integrand L : Ω×Mn×n

+ → IRn is
known as the stored energy function of the material (where Mn×n

+ denotes the set
of real n× n matrices with positive determinant.)

Typically, deformations are required to satisfy the local invertibility condition

(4.2) det∇u(x) > 0 a.e.

which is usually incorporated variationally by requiring that

(4.3) L(x,F) →∞ as detF → 0 .

Assumption (4.2) prevents local interpenetration of matter (if u is C1 this
result follows directly from the inverse function theorem, see also [5]. If u only lies
in a Sobolev space then results on the invertibility properties of u are contained,
for example, in [3], [6], [12].).

If the stored energy function is explicitly independent of x so that L = L(F)
then the material is said to be homogeneous.
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Frame indifference of the stored energy requires that

L(QF ) = L(F )

for all F ∈ Mn×n
+ and all Q ∈ SO(n) (the n × n special orthogonal matrices: i.e.

orthogonal matrices with determinant +1). If in addition the material is isotropic
then

L(FQ) = L(F )
for all F ∈ Mn×n

+ and all Q ∈ SO(n). (See [5] for further background on nonlinear
elasticity.) In the context of nonlinear elasticity, the structure and properties men-
tioned above give rise to the following variational symmetries: homogeneity of the
material yields

(4.4) (x,u) → (x + tc,u) ,

translational invariance yields

(4.5) (x,u) → (x,u + tc) ,

rotational invariance of the energy yields

(x,u) → (x,Q(t)u) ,

and isotropy of the material yields

(x,u) → (Q(t)x,u),

where c ∈ IRn is a constant vector and Q : (−δ, δ) → SO(n) ,δ > 0, satisfies
Q(0) = I. Each of the above variational symmetries immediately gives rise to
corresponding conservation laws via the formula (2.13) ( see [10] pages 281-283).

Of notable interest is the conservation law

(4.6)
∂

∂xα

[
L(∇u0(x))δβ

α −
∂uk

∂xβ

∂L

∂F k
α

(∇u0(x))
]

= 0, β = 1, 2.., n,

which we obtain here from the use of the family of symmetries given by (4.4) and
upon application of (2.13). That conservation law was derived by J.M. Ball in [1]
using “inner” variations of the form u0(x + tφ(x)) (with φ ∈ C1

0 (Ω) and t ∈ R to
palliate the difficulty encountered in using usual variations of the form u0(x)+tφ(x)
because these may violate (4.2) for arbitrarily small t 6= 0 even though u0 satisfies
(4.2).

Ball also considered “outer” variations of the form u0(x) + tφ(u0(x)), φ ∈
C1

0 ((u0(Ω)) from which he derived the weak form of the Cauchy equilibrium equa-
tions satisfied by u0, namely,

(4.7) (Div yT)i =
∂

∂yα
[Tiα] = 0

in u0(Ω), where

T(y) =
∂L

∂F
(∇u0(x))[∇u0(x)]T (det∇u0(x))−1

is called the Cauchy stress tensor and x = u−1
0 (y). In the context of this paper

(and the weak form of the conservation laws (2.14)) this same result obtained in [1]
follows from the use of the family of symmetries (4.5) together with test functions
θ(x) = θ̃(u0(x)) where θ̃ ∈ C1

0 (u0(Ω)). (See [1] and [4] for further details.)
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Remark 4.1. As a further example, we now suppose that L(F) is homogeneous of
degree p so that L(λF) = λpL(F) for all F ∈ Mn×n

+ for any λ > 0, then

(x,u) → ((1 + t)x, (1 + t)
p−n

p u) = (x̃, ũ)

is a further variational symmetry of (4.1).

Application of (2.13) immediately yields the following conservation law:

∂

∂xα

[
Mβ

α (∇u0(x))xβ +
p− n

p

∂L

∂F k
α

(∇u0(x))uk
0(x)

]
= 0, β = 1, 2.., n,

(see [10] Example 4.32 ). Note however that the requirement of p-homogeneity of
L is incompatible with condition(4.3) which must therefore be dropped if such a
setting is adopted. The next example illustrates such a situation and demonstrates
that minimisers may satisfy the weak form of some conservation laws but not others.

Example 4.1. Consider minimising

(4.8) E(u) =
∫

A

|∇u|2 dx

on W 1,2(A) subject to the boundary condition

(4.9) u|∂A = identity

The Euler-Lagrange equations for (4.8), (4.9) are formally given by

(4.10)
{

∆u = 0
u|∂A = identity

and by the strict convexity of (4.8) the unique global minimiser is given by the
homogeneous map

uh ≡ x .

There are clearly no other weak solutions for this Dirichlet problem in W 1,2(A).
However, the results of [11] show that for each n ∈ N there exists a minimiser uN

of E on

AN = {u ∈ W 1,2(A) : det∇u ≥ 0 a.e.,u = x on ∂A, u satisfies (HN )} ,

where (HN ) is a homotopy condition that the map u twists the annulus through
2πN (see [11] Definition 2.8). 3

The arguments in our current paper show that each uN must satisfy the weak
form of the corresponding energy-momentum equations (4.6), namely

Div M = Div
[
|∇u|2I −∇uT∇u

]
= 0

which are given in component form by

∂

∂xα
Mβ

α =
∂

∂xα

[
|∇u|2δβ

α −
∂uk

∂xβ

∂uk

∂xα

]
= 0 .

3More precisely, using polar coordinates, write

u(x) = u(r, θ), r ∈ [a, b], θ ∈ [0, 2π)

then for a.e. θ ∈ [0, 2π)

γθ(r) =
u(r, θ)

|u(r, θ)|
, r ∈ [a, b]

is a closed continuous curve in the plane with a well defined winding number around the origin,

denoted wind(γθ). The map u is said to satisfy (HN ) provided that wind(γθ) = N for a.e.
θ ∈ [0, 2π).
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Note that uN cannot satisfy the weak form of the Euler-Lagrange equations (4.10)
because of the uniqueness result alluded to above.

It is interesting to note that the integrand in (4.8) is homogeneous of degree
two and so by Remark 4.1 (p = n = 2) each uN also satisfies the weak form of the
conservation law

∂

∂xα

[
Mβ

αxβ
]

= 0 .

We anticipate that in this example each uN will be degenerate in the sense that
det∇uN = 0 on a set of non zero measure. In this case the corresponding Cauchy
stress tensor will be undefined and so the weak form of the Cauchy equations (4.7)
will not hold.

5. Concluding remarks

For sufficiently regular deformations u : Ω → IRn it is possible to change
variables to rewrite the energy functional (4.1) as an integral over the deformed
configuration u(Ω) :

E(u) =
∫

Ω

L(∇u(x))dx =
∫
u(Ω)

L̂(∇ux(u))du ,

where L̂(F) = detFL(F−1) and x : u(Ω) → IRn is the inverse of u : Ω → IRn

(see e.g. [2]). In the context of this paper, it is interesting to note that the energy
momentum tensor for L̂ is equal to the Cauchy stress tensor for L and vice versa,
i.e.,

∂L̂

∂F
FT

detF
=

[
L(F−1)I− (F−1)T ∂L

∂F
(F−1)

]
= M(F−1)

and

M̂(F) =

[
L̂(F)− FT ∂L̂

∂F
(F)

]
=

∂L

∂F
(F−1)

(F−1)T

det(F−1)
.

Hence these two tensors are in a precise sense dual to one another.

Finally, we note that in this paper we have only considered variational point
symmetries of the integral functional (2.1) and the corresponding conservation laws
(2.13). However, the general version of Noether’s theorem applies to more general
symmetries known as divergence symmetries for which the infinitesimal invariance
criterion (2.10) is replaced by the requirement that

φi(x,u(x)) ∂L
∂ui + ∂

∂xα

(
φi(x,u(x))

)
∂L
∂F i

α
+ ξα ∂L

∂xα +
(

∂
∂xα ξβ(x,u(x))

)
Mβ

α

= Div B ,

where B is a vector function of x,u and the derivatives of u (see [10] page 283).
The only modification that arises in our initial derivation of the conservation law
(2.13) is the inclusion of a term involving B. The modification to our derivation of
the weak form of this (more general) conservation law as a necessary condition for
a minimiser is straight forward and we leave this as an exercise for the interested
reader.
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